
MATHEMATICS OF COMPUTATION 
Volume 67, Number 224, October 1998, Pages 1517-1531 
S 0025-5718(98)00974-0 

THE APPROXIMATION POWER OF MOVING LEAST-SQUARES 

DAVID LEVIN 

ABSTRACT. A general method for near-best approximations to functionals on 
]Rd, using scattered-data information is discussed. The method is actually 
the moving least-squares method, presented by the Backus-Gilbert approach. 
It is shown that the method works very well for interpolation, smoothing and 
derivatives' approximations. For the interpolation problem this approach gives 
Mclain's method. The method is near-best in the sense that the local error 
is bounded in terms of the error of a local best polynomial approximation. 
The interpolation approximation in lRd is shown to be a C?O function, and an 
approximation order result is proven for quasi-uniform sets of data points. 

1. INTRODUCTION 

Let f E F where F is a normed function space on Rd, and let {Li(f)} I'1 be a 
data set, where {Li}t1 are bounded linear functionals on F. In most problems in 
approximation we are looking for an approximation to L(f), where L is another 
bounded linear functional on F, in terms of the given data {Li (f)}I. Usually we 
choose a set of basis functions, {k} C F, e.g., polynomials, splines, or radial basis 
functions. Then we find an approximation f to f from span{qk}, and approximate 
L(f) by L(f). If the approximation process is linear, the final approximation can 
be expressed as 

(1.1) L(f) ) L(f) ZaiLi(f). 
i=l1 

In analyzing the approximation error, or the approximation order, we are fre- 
quently using the fact that the approximation procedure is exact for a finite set of 
fundamental functions P span{pjj _1 C F (usually polynomials) 

(1.2) L(p)=EaiLi(p)=p, pEP. 
i=1 

In case the basis functions {k} C F are locally supported and P = Hm) it can be 
shown, in many problems, that the resulting approximation is O(hm+l), where h is 
a local data parameter. Another way of analyzing the approximation error follows 
directly from the representation (1.1). 

Let Q0 C IRd be the support of the functional L, i.e., L(g) = 0 for all g van- 
ishing on Q0, and let QI denote the support of Lj1 aiLi. Also let p be the best 
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approximation to f from the set P on Q _ Qo U QI, 

(1.3) EQ,p(f) -lf- PIQ = inf f - qllQ, 
qEP 

where l IIQ is the natural restriction to Q of the norm on F. Using (1.2) it follows 
that 

IL(f) - L(f)I < 'IL(f) - L(p) + IL(p) -L() 
I 

< ILIJ Ilf -PHIQ + Z aiLi(f -p) 
i=l1 

(1.4) 
(< ?ILIIlf-plIQ + E ? ai >3 lLi|L|f -pHIQ 

(HILIH + ?Z IaiILiII)EQ,p(f). 
i=l1 

Thus, a bound on the error in the approximation (1.1) is given in terms of the 
norms of L and the L's, the coefficients {ai}fl1, and of EQ,p(f), the error of best 
approximation to f on Q from P. Similarly, let p be the best approximation to f 
on Q from all q E P such that L(q) = L(f), and let 

(1.5) E'P (f) f-jR3IQ inf L lf-q||Q. Q,PW Ilf -P 
qEP,L(q)=L(f) 

Then it follows that 

I~~~ 
(1.6) [L(f) - Lf) l < Elail IlLi llEQ p (f) . 

i=l1 

In this work we skip the phase of approximating f by f E span{qk}. We directly 
construct approximations of the form (1.1) which satisfy (1.2). It is clear from (1.4) 
that on one hand we would like to minimize aI11 ai,Li and on the other hand 

we want a minimal domain Q = Qo U QI, where QI is the support of Lj1 aiLi. 
The second property is for reducing the factor EQ,p(f) in (1.4). If we could achieve 
a good solution satisfying those two interrelated goals, then we would get an ap- 
proximation which is "near-best", in the sense that its error is bounded by a small 
factor times the error of the best local approximation from P. In Section 2 we 
present a constructive way of computing such approximations. The general idea is 
motivated here through approximation theory considerations. However, it brings us 
back to the Backus-Gilbert theory [BG1]-[BG3], [BS]. The resulting approximants 
are closely related to the moving least-squares methods, starting with Shepard's 
method [Sh] and its extensions by McLain [Mcl], [Mc2], Franke and Nielson [FYNi], 
and Lancaster and Salkauskas [LS]. The generalized moving least-squares method 
is defined as follows. 

Definition. The moving least-squares approximation. Let {Li}>, , L and 
P be as above, and let {0(Li, L)} be some non-negative weights. The moving least- 
squares approximation to L(f) is defined as L(p*), where p* E P is minimizing, 
among all p E P, the weighted least-squares error functional 

(1.7) (Li(p) - L (f))20(Li, L). 
i=l1 
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The moving least-squares method is better known for function value approxima- 
tion from pointwise scattered data: 

Let {xi}j_1 be a set of distinct data points in Rd, and let {ff(x)}iL) be the data 
values at these points. The moving least-squares approximation of order m at a 
point x E Rd is the value p* (x) where p* E HIm is minimizing, among all p E Hm, 
the weighted least-squares error 

I 

(1.8) (p(xi) - f(xi))20(HIx - Xi ID, 

i=1 

where 0 is a non-negative weight function and is the Euclidean distance in 
Rd. The approximation is made local if 0(r) is fast decreasing as r -* oo and 
interpolation is achieved if 0(0) = oo. 

The connection between the moving least-squares method and the Backus-Gil- 
bert theory is shown by Abramovici [Ab] for Shepard's method, and for the general 
case by Bos and Salkauskas [BS]. This connection is re-established here using 
a simpler approach. We then show that the suggested approximants are C?, and 
prove a near-best property and an approximation order result. In Section 3 we apply 
the method to univariate interpolation, smoothing and derivative approximation, 
and to scattered-data interpolation and to derivative approximation in Rd, d = 2, 3. 
Further, we present some ideas for data dependent procedures for multivariate 
scattered-data interpolation. 

2. THE APPROXIMATIONJ SCHEME 
AND APPLICATION TO SCATTERED-DATA INTERPOLATION 

Let us assume that the data set {i(f)}' Jis finite and J < I. We suggest 
finding the coefficients vector a = (al,... ,a,)' for the approximation L(f) 
ZI_- aiLi(f) by minimizing the quadratic form 

(2.1) Q2 (2.1) Q = E w(Li, L)ai2,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ wL,La 
i=1 

subject to the linear constraints 

(2.2) aiLi(pj) =L(pj), j = 1,... J 

In (2.1) {w(Li, L)} are non-negative weights, w(Li, L) represents a separation mea- 
sure between the functionals Li and L, w(Li, L) > 0 if Li -7 L. 

Proposition 1. 1. Assume L -7 Lk, k = 1,... , I, and Rank(E) = J where 

E?,,j = Li (p2) for 1 < i < I, 1 < j < J. Then the approximation defined by the 
constraint minimization problem (2.1)-(2.2) is L(f) = ,I_1 aiLi(f) = -UtZa 
with 9- = (Li(f), ... , Lj(f))t and 

(2.3) a = D-1E(EtD- E)-1 c 

where D = 2 Diag{w(Ll, L), ... , w(LI, L)} and c = (L(pi),... , L(PJ))t- 
2. If the separation measure w satisfies w(L, L) 0 the suggested scheme is 

interpolatory in the sense that if L = Lk for some 1 < k < I, then L(f) - 

L(f). 
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3. The moving least-squares approximation defined by minimizing (1.7), is the 
same as the approximation obtained by the constrained least-squares problem 
(2.1)-(2.2) with w(Li, L) = (LiI L)-1. 

Proof. The constraint minimization problem (2.1)-(2.2) is transformed, using La- 
grange multipliers z1, .. ., Zj, into the linear system 

(2.4) D-a + Ez=O, and Eta = c. 

It can easily be verified that the matrix of the system, 

(2.5) A Q= 
D 

E), 

is non-singular, and that ai = D-1E(EtD-lE)`lc and z = (EtD-1E)-li solve 
(2.4). The second claim follows by observing that ai = 8i,k solves (2.2) and gives 
Q =O. 

Choosing 0 (Li, L) = w(Li, L)1 in (1.7) and expressing the functions in P by 
the basis {pj2}j , it directly follows that the minimizer of (1.7) is p* = Ej=l bjpj 
with 

(bi,... , bi) = -tD-lE(EtD-lE)-l 

Thus L(p*) = (b1,... , bj)c= it = L(f) and the third assertion is proved. g 

The Backus-Gilbert approach [BG1]-[BG3] is exactly in the form of the con- 
strained least-squares problem (2U.1)-(2.2), with only J = 1 in (2.2) and P1 -1. 
The general case is discussed in [BS]. Part 3 of Proposition 1 reasserts the connec- 
tion between the moving least-squares method and the Backus-Gilbert optimality 
which was shown by Abramovici [Ab] for Shepard's method, and for the more 
general case by Bos and Salkauskas [BS]. The proof here is much simpler. 

Let us demonstrate the application of the above general scheme to the problem of 
scattered-data interpolation in Rd. Given a set of data values {f(xi)}>I 1 one would 
like to find an approximating function f (x) satisfying f (xi) = f (xi), i = 1,..., I, 
and such that f is a good approximation to the underlying function f. Many 
methods were suggested for solving this problem, see e.g. [Fr], all based on explicit 
functional forms for f. In our terminology, we are given the values of the evaluation 
functionals Li(f) = f(xi), i = 1,... , I, and we look for an approximation to the 
evaluation functional L(f) = f (x) at a given x E Rd. For evaluation functionals we 
take radial separation measures {w(Li, L)} of the form 

(2.6) w(Li, L) = T7(IIx - xilI), 

where T1 is an increasing function on IR+, and 71(0) = 0. The support of the functional 

ZI_- aiLi here is simply set QI {xi I ai -7 0}, or practically, QI {xi ai > E}, 
where E is a small positive constant. Here Q0 = {x}, so to minimize Q Qo U QI 
we would like to make QI as close as possible to x. Hence we assign very large 
penalty weights to poinlts which are- far from x. Having tried several alternatives 
for the function T1, we found out that a very good choice is 

r2 
(2.7) 71(r) = exp(rj2)-1, 

where h is an average distance between the data points. In Section 4 we consider 
non-radial data-dependent separation measures. 
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The interpolation procedure in Rd. Given data values {f(xi)}>I_1, where {xi} c 
Rd is a set of distinct data points, we define the approximation at x E Rd as 

(2.8) L(f) Zaif (xi), 
i=l1 

where {ai} minimizes 

(2.9) Q = Er1(l(x -xi 1)ai, 
i=l1 

subject to the constraints 

(2.10) Zaipj (xi)= pj (x), j = 1,... J, 

where {pj}f-1 span 1m, the space of polynomials of total degree < m, J - (d+m) 

Here the system (2.4) is defined with with D = 2 Diag{r1(llx-xi II), , ,l(||z-XI ||, 

Ei,j =pj (xi) , I < i < I, I < j < J and c = (pi (x), . . . , pi(x))'. For J = I and 
?7(r) r2, it follows ([Ab]) that the resulting approximation is the well known 
Shepard interpolant. For J > 1 and rI(r) = r2 exp(ar2), we rediscover McLain's 
method [Mcl], [Mc2]. 

Proposition 2. The matrix A, given by (2.5) with D and E defined above and 7j 
given by (2.7), is non-singular if Rank(E) = J and 1 E P. 

Proof. Assume y = (z) is a solution of AV = 0; i.e., 

(2.11) Da + Ez = 0, and Eta = 0. 

Multiplying (2.11) by ait we obtain 0 = ftD-f + ftEz = jjjttDfa + ztEt-f = -tD-d. If 
x -7 xi, 1 < i < I, then -7tDf = 0 implies ad = 0, and since Rank(E) = J it follows 
also that z = 0. If x = xi for some 1 < i < I then the ith component of ai may be 
non-zero. However, since 1 E P, this contradicts Eta = 0. O 

The above results lead to the following interpolation theorem (see also [LS]). 

Theorem 3. Let P C C'(IRd), 1 E P, and let the distribution of data points 
I 

{xi} be such that Rank(E) = J. Then the approximation E aif(xi) is a C?? 
i=1 

function of x, interpolating the data { f (xi)}. Moreover, the coefficients {ai} decay 
exponentially in lx-xiH2/h2, i.e. 

(2.12) lail < K(exp(- Hx 
X _ 

)(Xx1-2 

for llx - xill/h > 1, where K = JHJ(EtD-lE)->1J. 

Proof. The first part follows by observing that the elements of A1 and c are in 
C' (IR d). Hence the solution vector -a of the system (2.4) is analytic in x. The 
decay rate is derived by the explicit form (2.3) for a. O 
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Computation of the interpolant. Practical considerations. The interpolant 
of order m is defined by (2.8) where the coefficient vector ai is defined by (2.3) with 
r1 given by (2.7), P = Hm, D = 2Diag{rf(llx - x1|),... *,r(x - xIHJ)}, Eij = 

pj(xi), I < i < I, I < j < J and c, = (pi(x), . .. ,pj(x))'. 
Since P = Hm is shift invariant, we suggest taking the basic functions {pj} 

to be the monomials shifted to x. - Thus we avoid using large numbers in E and 
we have c = (1, 0, ... , 0). Note that the computation of the moving least-squares 
interpolant of order m involves the solution of a Jth order system of equations, 
J = dim Im, and in most applications J < I. 

To avoid working with very large numbers in D, as the elements {r( 1x -xi )} 
can be, we normalize the system of equations as follows. We divide row i and 
column i of A by +/1 ? Dii and obtain the system Aa = b, where ?i = ai 1 ?D 
and 

(2.13)A=(Et) 

with Dbij = Diil(l + Dii) and ki,j =- Ei,jlVrl , 1Di < i < I,1 < j < J. 

Localized moving least-squares interpolants. The weight function r1 defined 
by (2.7) highly penalizes the use of points far from x. However, to obtain an 
approximation functional of a finite support one should use a function r1 which is 
infinite outside a certain circle around x, say of radius s. Also, we like to maintain 
the nice property of the approxirnant stated in Theorem 3, i.e., to make sure that 
the resulting approximation is C?. Both these objectives can be achieved with a 
properly chosen 71, as stated in the following: 

Theorem 4. Let S c Rd and s > 0 be such that Rank(E) = J for any x E S, 
where 

(2.14) Pij = pj(xi) Xx,s(xi), 

for 1 < i < I, 1 < j < J, and Xx,s is the characteristic function of the open ball of 
radius s around x, B(x, s). Also let 

(e r2)- ) x( S2) 
XO,8(r) (2.15) l-y1(r) = (exp(rh2 exp(-( - r) r)- 

Then, 
1. The approximation defined by (2.8)-(2.10) is a C? function of x on S, inter- 

polating the data {f(xi)}I 
2. The approximation is local, i.e., at each point x E S it uses only data values 

within the open ball of radius s around x. 
3. The error in the approximation can be bounded in terms of the coefficients 

{ai} and the error of the best local approximation to f from Hm, 
I I 

(2.16) f (x) - aif (xi) I < (1 + Sai )EB(x,s),m (fA) 
i=l1 i-1 

Proof. The above remark on normalizing the system of equations is useful here. 
The matrices D and E are modified by assigning ij = 1 and E_ij = 0, 1 < j < J, 
if Xx,s (xi) = 0. The matrix A is nonsingular for any x E S, and the solution vector 
a is C? as a function of x on S. It is also clear that ai = 0, and thus also ai = 0, 
if Xx,s(xi) = 0. The error bound (2.16) is derived from (1.4). g 
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The expression (2.16) for the error indicates the near-best property of the sug- 
gested approximant. We know that Ej1 aiI > 1 since 1 ai = 1. Therefore, if 
in application we get that i=1 jaiI is not much greater than 1, then we know that 
the error in the approximation is near the error in the local best approximation to 
f from HIm. We demonstrate this in Section 3. 

The interpolant proposed in Theorem 4 is of local support, and it is exact for 
f E Hm. Therefore, it is expected to give an O(hm+l) approximation order, pro- 
vided that f is sufficiently smooth. A first result of this type is presented by 
Farwig in [Fal] for approximations obtained by using Shepard's interpolation to 
local truncated Taylor series data. Further important results on the analysis of 
moving least-squares methods are presented by Farwig in [Fa2]. The above result 
(2.16) can also be derived by the analysis in [Fa2]. For presenting an approximation 
order analysis we first need, as in [BDL], a proper definition of a "mesh size" for 
scattered data points in Q C Rd. 

Definition. h-p-8 sets of mesh size h, density < p, and separation > 8. 
Let Q be a domain in IRd, and consider sets of data points in Q. We say that the 
set X - {xi}' is an h-p-8 set if 

1. h is the minimal number such that 

(2.17) Q c UjI=1B(xi, h/2), 

where B(x, r) is the closed ball of radius r with center x. 
2. 

(2.18) #{X n B(y, qh)} <p. qd q> 1, y EE R 

Here, #{Y} denotes the number of elements of a given set Y. 
3. 3 6 > 0 such that 

(2.19) lixi-xjll>h > 1<i<j<I. 

It is quite easy to prove an O(hm+l) approximation order for h-p-& data sets if 
the definition of the approximant is revised as follows. Instead of minimizing (2.9) 
we minimize 

(2.20) Q jZail, 
i=l1 

with 

(2.21) ai = 0, if xi ' B(x, qh), 

where q is a fixed positive number. This definition is also more appropriate in 
view of the expression (2.16) for the error (with S = B(x, qh)). However, the 
resulting approximant would not even be continuous in x. In Theorem 5 we prove 
the required O(hm+l) result for the smooth approximant defined by (2.8)-(2.10), 
and for h-p-& data sets. 

Theorem 5. Let f be a function in Cm+l(Q). Then, for fixed p and 6, there 
exists a fixed q > 0, independent of h, such that the approximant L(f) defined by 
(2.8)-(2.10), with Tj given by (2.15) and s = qh, satisfies 

(2.22) 11L(f) - fQ,oo < M .h 

for h sufficiently small, for h-p-8 sets of data points. 
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Proof. As in [BDL] it can be shown that, for sufficiently small h, there exists a 
fixed q > 0 such that the conditions of Theorem 4 hold with s = qh and S = Q 
for all sets of data points of mesh size h. For sets of density < p the number of 
data points in B(x, qh) is bounded by N = p qd, independent of h. So there are 
at most N coefficients {ai} participating in the approximant. Now we observe that 
the coefficients {ai} are continuous functions of the data points {xi}. Thus, for 
a fixed x and a fixed h it follows that E laiI < C, where C is the same 

xijE9(x,qh) 

constant for all h-p-8 sets of data points. Also it is clear that C does not depend 
on x. We further observe that the approximant in hand is invariant under the 
contraction mapping x -* ax, xi -* axi and h -* ah. Then it follows that C is 
also independent of h. The proof is completed by estimating the error as in (1.4) 
with p being the Taylor expansion of total degree m of f at x. E 

We believe that the above approximation results can be extended as follows. 

1. The restrictions on the density and the separation in Theorem 5 may be 
removed. 

2. For h-p-8 sets of data points the constant K in (2.12) is uniformly bounded 
in x. 

3. The approximation rate result (2.22) holds with Tj given by (2.7). 

3. NUMERICAL DEMONSTRATION 

The moving least-squares method can be applied to many problems in multivari- 
ate approximation, and it calls fox a comprehensive testing and comparison study. 
In this section we present some results on the application of the method to in- 
terpolation, smoothing and derivative approximation in R1, and to scattered-data 
interpolation in Rd, d = 2, 3. Unlike the experiments in [Fr], here we mainly tested 
the locality and the norm of the approximation coefficients' vector a. We hope to 
convince the reader that the method gives "near-best" approximations. Moreover, 
from the experience gained with this approximation, we feel that this rather simple 
method gives almost the best result among all linear methods based on the given 
data. 

Example 1. Univariate interpolation and smoothing. Consider the very 
simple case of univariate interpolation at equidistant points in [0,1], xi = 0.(i - 1), 
i = 1,... ,11. Consider the moving least-squares interpolant defined by (2.7) with 
h = 0.1. The coefficients {ai} were computed by (2.3), which involve the solution 
of a linear system of order J = m + 1. For m = 2 the approximant reproduces 
quadratic polynomials. To demonstrate its locality and its "near-best" property, 

I 
let us view the behavior of the coefficients {ai} and their ?1-norm 11-all = E jail 

i=1 
as functions of x in [0,1]. We find that maxxE[o0l] 11-all < 1.24 which implies, 
by the remark following Theorem 4, that the error is bounded by 2.24 times the 
error of the best approximation by a quadratic polynomial. In Figure 1 we give 
graphs of H1-a11 as a function of x, x E [0, 1]. The upper graph is for the case of 11 
equidistant points in [0, 1], and the lower graph is for 11 randomly chosen points 
in [0, 1]. The points with 11ll 1 = 1 are, of course, the interpolation points. The 
approximation is also found to be very local. For example, the coefficients' vector 
-a for approximation at the point x = 0.33, by the above 11 equidistant points, is 
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a = (-4.22. i0-,-5.69- 0-,-7.73. 102,8.6210-1,2.30.10-1,8.73. i0-,-5.47. 
10-4, -2.05. 10-6, -8.11 . 10-10, -3.81 . 10-14, -2.23 10-19)t. 

We also applied the interpolation procedure to a specific function. To demon- 
strate the power of the method and the significance of the strong locality, we choose 
the function 

(3.1) f(x) = (2 - cos(IOx))11 - 4x2IH(x - 0.75), 

shown in Figure 2. This function has 5 local extrema, a point of jump discontinuity, 
a point of derivative discontinuity, and a flat part. This "rich" function is measured 
at 11 equidistant points in [0,1] and the interpolant is computed with m = 2. The 
resulting approximant is depicted in the upper graph in Figure 3. It evidently 
shows the very localized influence of the points of discontinuity, and the power of 
reconstructing the major features of the approximated function. In the lower graph 
in Figure 3 we demonstrate the potential application of the moving least-squares 
method for smoothing. The smoothing here is obtained by using the method with 
r, defined as 

(3.2) rq(r) = expr( ) ) 

Example 2. Univariate derivative approximation. Next we consider approx- 
imation to the derivative of functions in [0,1], based on function values at the same 
11 points as above, xi = 0.1(i - 1), i = 1, . . . ,11. Here we are given the functionals 
Li(f) = f(xi) and we look for an approximation to L(f) = f'(x). Since we are not 
looking for interpolation, we define the separation-measure here by (2.6) with rq de- 
fined by (3.2). We took P = H4 and computed the coefficients of the approximant, 
for 101 equidistant points in [0, 1], by equation (2.3). We find that 

mnax 11alli < 22, 
xC [0.2,0.8] 

and maxxc[o,l] flalli < 107. These bounds are not very big since for derivative 
schemes one expects IlfI a = O(h-1). Figure 4 shows the graph of IlIaII as a function 
of x. 

The error in the approximation to the derivative of f (x) - cos(x) at 101 equidis- 
tant points in [0,1] is shown in Figure 5. The main features observed here are that 
the absolu-te value of the error gets bigger toward the ends of the interval, as ll, 
does, and it has local maxima near data points and local minima near midpoints. 

Example 3. Scattered data interpolation in 1R2 and IR3. The common way 
of presenting the efficiency of a multivariate approximation method is by apply- 
ing it to many test functions and listing the resulting errors. Following the general 
idea of this work, driven by the error bound (1.4), it suffices to present bounds on 
Hlall, and to demonstrate the locality property of the coefficients {ai}. 

We examined interpolation at data points scattered in [0, i]d, for d = 2,3, and 
obtained very good approximations for many test functions. We choose to demon- 
strate here that we really achieve the goals set in the Introduction. Namely, a 
smooth approximation scheme of the form (1.1) where the norm 11all1 of the coef- 
ficients is small, and also the support of the coefficients is small. We applied the 
moving least-squares interpolant of order 3, for a set of 81 data points randomly 
chosen in [0,1]2, with h = 1/9. In Figure 6 we display the coefficients of the ap- 
proximant at the point x = (0.75,0.75) (depicted by a cross), where each point is 
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represented by a circle of diameter proportional to the absolute value of the cor- 
responding coefficient (plus a very small constant). The circles are open to the 
right if the coefficients are positive, and to the left if negative. We observe that the 
significant coefficients are all positive, and that they are all in a small neighborhood 
of the point x = (0.75,0.75). It turns out that all the coefficients of absolute value 
> 0.01 are within a circle of radius .0.25 around (0.75,0.75) and that flall1 = 1.462. 
Thus we know, by (1.4), that the error is bounded by 2.462 times the error of the 
best approximation to f from H13 in a small neighborhood of x. For comparison we 
evaluated the polynomial approximation at x = (0.75,0.75) based on interpolation 
at the 10 closest points to x from the same set of data points (dim El3 = 10). If we 
express this approximation in the form (2.8), it turns out that lfalli = 204.24. thus 
we conclude that this local interpolation approach, apart from being non-smooth, 
yields much worse approximations. 

Similar properties were observed in the 3-D case. Here we applied the moving 
least-squares interpolant of order 2, for a set of 125 data points randomly chosen 
in [0, 1]3, with h 0.2. In Figure 7 we display the coefficients of the approximant 
at the point x (0.25,0.25,0.25) (depicted by a 3-D cross), where each point 
is represented by a box of a size proportional to the value of the corresponding 
coefficient. The boxes are open above if the coefficients are positive, and open 
below if negative. We observe that the significant coefficients are all positive and 
that they are all in the small neighborhood of the point x = (0.25,0.25,0.25). For 
this point we have 11allH = 1.345, so again the approximation is local near-best. For 
example, for the specific function f (x) = cos(2x)ey(x ? y ? Z)2, the error at that 
point is 0.001. 

We remark that the local scheme suggested in Theorem 4 has been tested and 
the results do not differ much from the global method. 

4. TOWARD DATA DEPENDENT APPROXIMANTS 

The procedures discussed above are linear, and they do not use any information 
about the approximated function. We know that data dependent approximations 
can be much better, see [DLR] for example. With the approximation scheme pre- 
sented here we have a convenient way of introducing a good data dependent scheme. 
The essential point in data dependent approximation in JRd is to use more infor- 
mation from directions in which the variations in the function are small, and less 
information from directions of high variations. The variations can be measured 
by the second order partial derivatives of the function. We can adapt our defini- 
tion of the interpolation procedure (2.7)-(2.10) by considering a non-radial penalty 
function, 

(4.1) w(Li, L) = exp((x - xi)tT(x - xi)/h2) - 1, 

to be used in (2.1). Here T is a d x d positive definite matrix, to be chosen so that 
the ellipsoid ytTy = 1 has larger axes in the directions of smaller variations in the 
function. A method for determining these directions may be based upon estimating 
the second order partial derivatives of the function by the linear method presented 
in this paper. We have performed some numerical experiments based on this idea, 
and it proved to be very good. Here we choose to present just the influence of 
introducing the matrix T on the coefficients of the approximant. We return to the 
above two dimensional example, which uses T = I, and, for the same data points 
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and for x = (0.75,0.75), we replaced the penalty function by (4.1) with 

(4.2) T = ( o.05) 

The resulting coefficients are displayed in Figure 8, using the same display code as 
in Figure 6. It is clearly seen that the approximation now uses more information 
from the y direction, and that the norm of the coefficients is still small, fla-1j = 1.34. 

If we want to use the above idea of directional interpolation and still maintain the 
high smoothness of the approximant, the matrix T should be smooth in x. Another 
idea, which has not been tested, is to use a variable parameter h in the definition 
of the approximant. This can be useful for cases where the density of data points 
is highly non-uniform, with h representing the local mesh size. As in the previous 
case, h should vary smoothly in x. Another issue that has not been tested enough 
is the use of sets P other than polynomials, e.g., trigonometric functions, or splines. 
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FIGURE 1. The graph of 11allI as a function of x for 11-point inter- 
polation in [0,1], with equidistant points (up) and scattered points 
(down). 
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FIGURE 2. The test function f 
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FIGURE 3. The 11-point moving least-squares interpolation to f 
(up) and smoothing (down). 
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FIGURE 4. The graph of II-all1 (for derivative approximation) as a 
function of x. 
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FIGURE 5. The error in the approximation to f'(x), f(x) = cos(x). 
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FIGURE 6. The coefficients {ai} for interpolation at x (.75,.75). 
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FIGURE 7. The coefficients {ai} for interpolation at x (.25,.25,.25). 
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FIGURE 8. The coefficients for directional interpolation at x = (0.75, 0.75). 
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